Theme 1 – Produced Fluid

Flow Assurance and Separation for the Oil & Gas Industry

Phil Stopford
ANSYS UK
Flow Assurance Overview

- Multiphase flow
 - Gas-liquid systems
 - CFD methods
 - Slugging flow
 - Gas lift
 - Fluid-solid systems
 - Sand transport
 - Hydrates
Introduction

• Oil fields produce a mixture of oil, gas and water

• Challenges
 – Harsh environments, uneven terrain, remote location

• Flow assurance
 – Produce and transport hydrocarbon fluids economically and reliably
Multiphase - What’s Happening?

- Film flow
- Erosion
- Slugging flow
- Bubbles
- Gas hydrates
- Droplets
- Gas
- Oil
- Wax
- Corrosion
- Surface scale
- Emulsions
- Suspended particles
- Slurry
- Sand
Typical Oil Production

- Reservoir
- Liquid
- Bubble point
- Liquid + gas bubbles
- Subsea manifold
- Platform

© 2011 ANSYS, Inc. All rights reserved.
Gas – Liquid Systems
Flow Regimes

Vertical flow
- Bubble flow
- Churn flow
- Slug flow
- Annular flow

Horizontal flow
- Bubble flow
- Plug flow
- Stratified-wavy flow
- Slug flow
- Annular flow
- Mist flow

© 2011 ANSYS, Inc. All rights reserved.
Further Complicated

• Flow regime not just a function of flow rates
Two Distinct Scales

• Lower resolution, large scale models (whole pipeline)
 – Model applicability is geometry and flow condition specific
 – 1D data available
 – Examples include OLGA, TACITE, PEPITE and PIPESIM

• High resolution, small(er) scale models (specific locations)
 – Empirical correlations valid over wide range of geometry and flow conditions
 – 3D data available
 – More computationally expensive
 – ANSYS CFD software
Computational Models

- Discrete Phase Model/Particle Transport Model
 - Liquid droplets, solid particles or gas bubbles
 - Maximum of 10% volume fraction
 - Can be used as a post-processing tool
 - Computationally cheap
Computational Models

- **Eulerian Model**
 - Liquid droplets/gas bubbles
 - No maximum volume fraction
 - Expensive if many dispersed particle diameters needed
 - Heterogeneous – each phase has a separate velocity field

Air volume fraction on cross section for bubbly flow regime

Volume of control cell V_c
Volume occupied by phase $\alpha = r_\alpha V_c$
Volume occupied by phase $\beta = r_\beta V_c$
Computational Models

• **Volume of Fluid (VOF) Model**

 – Applies to immiscible fluids only
 – Homogeneous
 • only one velocity field
 – Tracks fluid interface
 – No maximum volume fraction
 – Cannot be used if significant engulfment occurs
 – Not practical for droplet/bubble modelling at large scale

© 2011 ANSYS, Inc. All rights reserved.
Modeling of Turbulence in the Free surface

Effect of Damping (Verification Case)

Case 1
- Air: 5 m/s
- Water: 1 m/s

Wall Velocity = 1 m/s

Case 2
- Air: 5 m/s
- (Single phase case with only air flowing over moving wall)

Single phase
Multiphase + damping
Multiphase + No damping

No damping

With damping
A source term is added to the omega equation for turbulence damping.

\[S = A \Delta n \beta \rho \left(\frac{6B \mu}{\beta \rho \Delta n^2} \right)^2 \]

where:
- \(S \): Model constant, typically 0.075
- \(\beta \): Damping factor
- \(B \): Interfacial area density
- \(\mu \): Viscosity of phase \(i \)
- \(\rho \): Density of phase \(i \)
- \(\Delta n \): Grid size at interface

Interfacial area density is calculated as

\[A = 2.0 \times f \times |\nabla f| \]

where
- \(f \): Volume fraction of phase \(i \)
- \(|\nabla f| \): Magnitude of gradient of volume fraction

Grid size \(\Delta n \) is calculated internally using grid information.
Slug Flow

From http://www.fzd.de/FWS/FWSF/messtechnik/videometrie/slug.avi

<table>
<thead>
<tr>
<th>Cause</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrodynamic</td>
<td>Higher pressure drop for flow</td>
</tr>
<tr>
<td>Terrain induced</td>
<td>Could cause platform trips and plant shutdown</td>
</tr>
<tr>
<td>Operational</td>
<td>Unwanted flaring</td>
</tr>
<tr>
<td></td>
<td>Reduces capacity of separation and compression units</td>
</tr>
<tr>
<td></td>
<td>Enhance corrosion, erosion and fatigue in pipelines</td>
</tr>
</tbody>
</table>
Slug Flow

From http://www.fzd.de/FWS/FWSF/messtechnik/videometrie/slug.avi

Effect

<table>
<thead>
<tr>
<th>Higher pressure drop for flow</th>
<th>Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Could cause platform trips and plant shutdown</td>
<td>Enhance corrosion, erosion and fatigue in pipelines</td>
</tr>
<tr>
<td>Unwanted flaring</td>
<td>Reduces capacity of separation and compression units</td>
</tr>
</tbody>
</table>

Cause

<table>
<thead>
<tr>
<th>Hydrodynamic</th>
<th>Terrain induced</th>
<th>Operational</th>
</tr>
</thead>
</table>

© 2011 ANSYS, Inc. All rights reserved.
Horizontal Slug Flow Validation

Experiments by Th. Lex et al, TD, TU Munich.
Terrain Induced Slugging: Results
Gas pipeline from off-shore field to land-based Hannibal terminal
Slug catcher separates residual liquid from gas at end of pipeline
Plan to increase pipeline capacity to supply new power station
Does capacity of slug catcher also have to be increased?

Inlet conditions for liquid-gas from Olga 1D pipeline model

Estimated cost of modifying slug catcher $25M
Can slug catcher cope with increase in capacity of pipeline?

Yes – Only small amount of liquid carry-over in the form of a fine aerosol
Transient Adaptation in Inlet Header

Initial Mesh

Adapted Mesh
Operational: Gas Lift

• **Need**
 – Enhance oil production
 – Mitigate slugging

• **Physics**
 – Bubble size
 • Drag coefficient

• **Topsides**
 – Gas removal
 – Cause of gas slugging?

From Flow assurance, Elijah Kempton & Tommy Golczyński, MTS symposium
Gas Lift: Hold Up Profiles

- Small bubbles
 - Wall peaking at both positions

- Large bubbles
 - Wall peaking for lower position
 - Centre peaking for upper position

Bubble Size effect on the gas-lift technique PhD thesis of Sebastien Christophe Laurent Guet
Gas Lift: Hold Up Profiles

H = 5 m Low point H = 13 m High point

Simulation & experiment, different positions

Bubble Size effect on the gas-lift technique PhD thesis of Sebastien Guet
Fluid - Solid Systems
Slurry Flow Regimes

- Slurry flow is classified into different regimes
- The transition between regimes depends on:
 - Solids concentration
 - Velocity
 - Particle Diameter
 - Turbulence
 - Profile

Solids Phase Models

• Similar to gas-liquid systems
 – Discrete Phase Model
 • Low solids concentration
 • Best suited for “mobile” particles
 • Erosion & accretion models available
 • Computationally quick and cheap
 – Eulerian Granular
 • High solids concentration
 • Can account for both mobile and stationary particles
 • Computationally more expensive than DPM
Sand Transport

- Analysis of the following variables:
 - Slurry velocity
 - Solids concentration
 - Solid particle diameter

- Mesh: 0.5 million cells

Heterogeneous flow

Solids Volume Fraction

Y / D

- Fluent CFD: dp = 120 um
- Matousek, 2002 (dp = 120 um)
- Fluent CFD: dp = 370 um
- Matousek, 2002 (dp = 370 um)
Modelling for hydrates

- **Hydrate prevention strategies**
 - Insulation and heating under normal operation
 - Identifying cold spots, remedies
 - Flushing and inhibition strategies
 - Water removal and dehydration

- **Hydrate management strategies**
 - Models for hydrate formation and deposition
 - Particulate transport, erosion
 - Hydrate plug transport and acceleration
Heat transfer in bundled pipelines
Experimental and CFD studies of heat transfer in an air-filled four pipe tube bundle
L. Liu, G. F. Hewitt, S. M. Richardson
Risk management

- Hydrate formation in gas rich systems
 - Real gas behaviour of natural gas
 - Nucleation, growth and deposition of particles
 - Dilute and dense multiphase flows
- CFD to determine flow field
- Model for hydrate nucleation and growth
- Track particle velocity
- Model for particle motion and deposition near walls

A new approach to investigate hydrate deposition in gas-dominated flow-lines
Jassim et al., J. Natural Gas and Engineering, 2, 163-177 (2010)
Deposition distance v experiment

Fig. 15. Deposition distance predicted by simulation and measured during a function of pipe size.

Fig. 20. Comparison of hydrate deposition distance predicted by proposed model and experimental results as a function of Reynolds number.

DD v Pipe Diameter

DD v Pipe Diameter for ice particles and liquid droplets
Multiphase Separators
Separators Overview

• Modelling methods
• Separator types
 – Gravity separators
 – Sloshing
 – Cyclones
 – Axial flow cyclone
 – Twister separator
Multi-phase modelling in separators

- **Lagrangian Particle, droplet or bubble tracking (DPM)**
 - Individual trajectories are predicted
 - Can include momentum interaction
 - Does not account for the volume occupied by the dispersed phase

- **Mixture model**
 - Simple and cost effective model accounts for volume occupied by the dispersed phase.
 - Assumes both phases have the same velocity consequently no counter current flow

- **Volume of fluid modelling**
 - Used to predict stratified flows

- **Eulerian – Eulerian and Eulerian - Granular**
 - Accounts for high volume fractions of dispersed phase
 - Can accommodate coupling between the phases
Four-phase separator

- **Objectives**
 - Compare designs for two inlet configurations
 - Investigate water and gas distribution in detail
 - Characterize destination of smaller quantities of oil and sand
- **It consists of an inlet, several baffles, a water outlet, and a spillweir**

Courtesy of Zeta-pdm Ltd.
Four-phase separator

- The gas-water mixture is simulated using the Eulerian multiphase model
- Trajectories of sand (for a range of sizes) are computed using DPM
- The oil concentration is small, so this component is neglected

The water-gas interface near the inlet region

Courtesy of Zeta-pdm Ltd.
Four-phase separator

• Contours of volume fraction of gas near the inlet are shown
• The highly turbulent inlet mixture is calmed by the baffles
 – Note the change in the interface
• Assessing the effectiveness of the baffle design (not shown) was one motivation for the analysis

Courtesy of Zeta-pdm Ltd.
Four-phase separator

- Two inlet designs were tested
- Both performed well for separating large bubbles and particles
- Inlet 1 performed better for small bubble/particle sizes
- Results confirmed that the baffle design was good, and helped find the most efficient inlet design
Water surface in four-phase separator
Sloshing example

- A 10 ft diameter by 40 ft long tank with internals is simulated under “stormy” conditions

- Three-dimensional, three-phase transient VOF simulation of gas/oil/water interfaces

- 30K cells full hexahedral mesh run on a dual-processor workstation. Run time is ~ 29 hours for 23 seconds of real time simulation

- Dynamic simulation is achieved by modelling all six degrees of wave motion through a set of User Defined Functions
Sloshing example

Time = 000 E-01 sec.

Courtesy: Chang-Ming Lee, Ph.D. NATCO Group Inc., Houston, TX
Cyclone

- CFD provides a detailed understanding of flow distribution, pressure losses, heat transfer, particulate separation, collection efficiency, etc.
- Analyze the impact of changes to equipment geometry
 - Study off-design operating conditions
 - Examine scaling effects
- Reduce design time and expense
 - Faster than testing
 - Minimize expensive equipment outages
Cyclone

• Cyclone separates by generating g-forces

• G-forces required for efficient separation is determined by:
 – Density differential
 – Fluid viscosity
 – Particle diameter

• CFD analysis is used to determine the average g-force generated for specified operating conditions
Cyclone - validation

Tangential velocity

Axial velocity

+ k-epsilon, RNG, — RSM, Δ experiment [LDA]
Cyclone – flow features

- Vortex core clearly visible
- Velocity vectors showing axial flow
- Modelled using the LES turbulence model
Cyclone - multiphase

- Particle separation
 - Air core present
 - Green particles low inertia
 - Yellow particles high inertia
RSM and Eulerian simulation results
Cokljat et. al. 2003

Mondron cyclone simulated using RSM and Eulerian-Eulerian approach, 5 phases simulated on 70,000 cells took 4 days to solve on 6 parallel CPU.
Particle Erosion predictions in Krebs PL5109

- Erosion rate shown on the under and overflow sections (different scale used)
Model for gas dehydration

In Twister, the feed gas is expanded to supersonic velocity, thereby creating a homogeneous mist flow. During the expansion, a strong swirl is generated via a delta wing, causing the droplets to drift toward the circumference of the tube. Finally a co-axial flow splitter (vortex finder) skims the liquid enriched flow from the dried flow in the core. The two flows are recompressed in co-axial diffusers resulting in a final pressure being approximately 35% less than the feed pressure.

Betting, Lammers and Brost, Twister BV
www.TwisterBV.com
Typical mid Twister conditions:

Schematic representation

Saturated Gas

Liquid / Gas Separation

Dry Gas

Liquids

Typical inlet conditions:
100 bar, 25 degC

Acceleration to Mach 1 cools gas
Further cooling from acceleration to Mach > 1

Cooling causes condensation

Axial velocity

High

Low

Typical mid Twister conditions:
30 bar, -45 degC

Typical outlet conditions:
70 bar, 15 degC
Twister Supersonic Separator

- EOS including phase change model
- Condensable and non-condensable gas species
- Nucleation and growth model
- Droplet coalescence
- Slip model for separation
- Turbulence dispersion model
Summary

• The flow regimes likely to be encountered in upstream operations have been investigated
• Suitable computational approaches have been outlined, and examples given

• The appropriate use of detailed engineering simulations can increase knowledge and thereby mitigate flow assurance and separation issues
• Encouraging results obtained for gas-lift, slug flow and sand transport

• New simulation technologies and models will increasingly play a crucial role in flow assurance and separator modelling
 – CFD for complex sections of equipment
 – In combination with 1-D models (e.g. OLGA 2000) for full pipeline models