Balanced Amplifier in Package on Board

Tony Donisi
Eldon Staggs
Introduction

Demonstrate MMIC Balanced Amplifier design flow
• Linear and Non-Linear Design
• Amplifier incorporated into package
• System in packages and board

Evaluate System performance
• Non-linear circuit evaluation of Amplifiers
• Linear evaluation of Hybrid combiners
• Electromagnetic evaluation of packages on board
• Co-simulation of entire system
Agenda

Design Environment
• Design Technology and Management
• Designer Links
• HFSS – Solver on Demand

System details
• Balanced Amplifier overview
• MMIC Amplifier design
• Hybrid design

System on board design
• Amplifier in Package
• Entire design on board
Overview: Chip in Package
Overview: Package to Board
Design Environment
Ansoft Designer Overview

Design Technology

• Circuit & System Analysis
 – Time and Frequency Domain
• Electromagnetic Analysis
• Solver on Demand
 – HFSS, PlanarEM, Nexxim and HSPICE

Design Management

• Hierarchical Schematic and Layout (2D/3D)
• Design Exploration
 – Parameterization, Optimization, Sensitivity & Statistical
• Bi-directional Links to Field Solvers
 – HFSS, PlanarEM, SIwave, Q3D, 2D Extractor
• 3rd Party Links for Models and Geometry

High Performance Computing (Multi-core/GPU)
Ansoft Designer User Interface

- Design Management
- Design Entry
- Layout
- Post-Processing
- Simulation Management
- Property Management
Designer Links

Links for Cadence Allegro/APD/Virtuoso
• Run from either Cadence or Designer (Allegro/APD)
• Design cutouts and wirebonds for critical nets
• Tightly couples ECAD, Circuits and HFSS

Links for ODB++
• Common PCB Manufacturing format
• Translation path for Mentor, Zuken, Cadence, Altium, ...
Ansoft Designer HFSS - Solver on Demand

HFSS - Solver on Demand
• Intuitive PCB design entry alternative for HFSS
• Chips, packages, channels, modules, ...
• HFSS / PlanarEM engine selection at runtime

3D Full-wave FEM Technology
• Designer layouts simulated with HFSS
 – Boundaries handled automatically
 – Excitations with a mouse click
 – Finite dielectrics and ground supported

• Terminal Excitations (Wave and Lumped Gap Port)
 – Single ended and Differential
 – Vertical and Horizontal
 – Coaxial, CPW and Grounded CPW
System Design Details
What is a Balanced Amplifier?

- Two nearly identical amplifiers in parallel
- Amplifiers between two 90° hybrids
 - Reflections cancel at I/O ports through hybrid
Balanced Amplifier

Why used a Balanced Amplifier?

- Amplifiers optimized without concern of loading
 - Noise Figure, Flatness, etc.
- Linear range and Max power increase by 3dB
- Reflections absorbed by loads at isolation ports

\[
\frac{V_{\Gamma}}{2} \angle 0^\circ + \frac{V_{\Gamma}}{2} \angle 180^\circ = 0
\]

\[
\frac{VG}{\sqrt{2}} \angle 0^\circ
\]

\[
VG \angle 90^\circ
\]
Balanced Configuration Operation

\[A \leq 0^\circ \]

\[\frac{A}{\sqrt{2}} \]

\[A \leq \theta - \phi \]

\[\frac{A}{\sqrt{2}} \]

\[\theta - 90^\circ \]

\[\frac{A}{\sqrt{2}} \]

\[\theta \leq 90^\circ \]

\[\frac{A}{\sqrt{2}} \]

\[\theta - 90^\circ \]

\[\frac{A}{\sqrt{2}} \]

\[\theta \leq \phi \]

\[\frac{A}{\sqrt{2}} \]

\[\phi - 90^\circ \]

\[\frac{A}{\sqrt{2}} \]

\[\theta - 90^\circ \]

\[\frac{A}{\sqrt{2}} \]

\[\theta \leq \phi \]

\[\frac{A}{\sqrt{2}} \]

\[\theta - 90^\circ \]
Design Description

- Balanced Amplifier
 - Combine two MMIC Amplifiers in parallel
 - Incorporate amplifiers in separate packages
 - Combine Amplifiers and 90° Hybrids on board
 - Include on-board biasing for amplifiers
MMIC Amplifier Design
MMIC Amplifier Details

Power Amplifier

- Modeled in Designer with UMS design kit
 - UMS pHEMT Process
- 10GHz center frequency
- Multiple Gain stages for increased output
 - Wilkinson dividers to distribute power
 - Compression determined by final stage
 - Linear region and compression level increased
- Reactive matching
- Transmission line sections designed for 10GHz
Amplifier Schematic

• Three Gain stages separated by Wilkinson dividers
Amplifier Response

- Three amplification stages produce 22dB of gain
- Input compression point around 11dBm

Gain = 22dB

F = 10GHz

Power = 30dBm
P1dB = 11dBm
Amplifier Layout
Branchline Hybrid Design
90° Hybrid Design Overview

- Hybrid Applications
- Power Splitter / Combiner
 - Load on one of the input / output ports, respectively
- Sum and Difference outputs
 - Two inputs to hybrid

- 90° Hybrid Features
- Power Splitter
 - Second input port is terminated
 - Quarter wavelength lines
 - Series lines have lower imedance
 - Output ports are 90° out of phase with each other

\[Z = Z_0 / \sqrt{2} \]
\[L = \frac{\lambda}{4} \]
90° Hybrid Design Overview

- Physical Modeling
- Implement with transmission lines
- Conserve space by bending series lines
- Parameterize lengths and widths
- Analyze electromagnetically to account for all effects
- Optimize and Tune to 10GHz
90° Hybrid Design Overview

- Physical Modeling
- Implement with transmission lines
- Conserve space by bending series lines
- Parameterize lengths and widths
- Analyze electromagnetically to account for all effects
- Optimize and Tune to 10GHz
90° Hybrid Design Setup

- Hybrid Parameterization
- Wavelength, width and feed length

- HFSS – Solver on Demand
- HFSS analysis directly in Designer
- View mesh, airbox and parameterization
Hybrid Parameterized Analysis

- **Build Model from parametric solutions**
 - Coarse sweep over each parameter
 - Distributed solve for speed up

- **Circuit Model of HFSS solution**
 - Circuit simulation interpolates solution space
 - EM accuracy at circuit speeds
Hybrid Real Time EM Tuning

- Solved Parametrically
- Tuned in real time

Lambda/4 = 144mil
W35 = 6.7mil
Larm = 125mil

Curve Info
- dB(S(Port1,Port1))
- dB(S(Port1,Port2))
- dB(S(Port1,Port3))
- dB(S(Port1,Port4))

Lambda4='144mil' Larm='125mil' W35='6.7mil'

Test Hybrid Tuned Response
Include Package Transition Effects

• Additional effects
 • Wirebonds
 • Vias
 • Transitions
 • Package
• Include "partial package" in hybrid analysis
 • Vary arm lengths to tune hybrids
Package & Transition Parametric Sweep

- Parametric Analysis

![Setup Sweep Analysis screenshot](image)
Dual Hybrid Testing

• Check parallel operation
 • Validate balanced amp configuration
 • Amplifiers added in at final testing
 • Tune parametric model

• Demonstrates
 • Insertion and Return Loss
 • Isolation functionality
 • Design Integrity
Dual Hybrid

• “Design in Design” feature
 • Paste EM Designs into other EM Designs
 • Unlimited Hierarchy
 • Solve “full” model
 • Sub-Designs are fully parameterizable

Other Geometries
Dual Hybrid Electromagnetic Results

RF In

Iso

RF Out

S-Parameters Plot

F [GHz]
Via Transition
MMIC Amplifiers in Packages on Board
Chip in Package on Board

- **MMIC Amplifier in Package**
 - MMIC Chips in QFN Package
 - 2 packaged amplifiers on FR-4 multi-layered board
 - Multiple wire bonds and vias in package

- **Balanced Amplifier on Board**
 - Multiple SMT Components for bias
 - Branchline 90° hybrids in stripline layer
 - Vias, signal pads and interconnects

- **HFSS – Solver on Demand**
 - Board & package solved with HFSS in Designer
 - Combined with power amps and passives
Chip in Package on Board
Mesh View: HFSS in Designer

Without Bias For clarity
Mesh View: HFSS in Designer

With Bias
Chip in Package On Board: Schematic
Full Board and Package Layout
Full board Linear Performance

- System Gain very close to ideal: 21.9dB
Power Comparison

<table>
<thead>
<tr>
<th>Name</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>13.0</td>
<td>30.5</td>
</tr>
<tr>
<td>m2</td>
<td>13.0</td>
<td>33.0</td>
</tr>
</tbody>
</table>

BLUE – Full Board
RED – Single Amplifier
Conclusion

- An integrated *Chip in Package on Board* Design flow has been presented
 - Balanced Amplifier
 - MMIC Amplifier
 - Branchline Hybrid

- Electromagnetics and Circuits combined for entire solution
 - Non-linear amplifier handled at circuit level
 - Hybrids, Packaging and Board handled with Electromagnetics
 - Designer Links automates geometry transfer and setup
 - HFSS – Solver on Demand integrates seamless with circuits

- Balanced Amplifier Benefits
 - Amplifier design optimized independent of loading effects
 - Increased linear dynamic range and maximum power