Drop Test Simulation Made Easy
With ANSYS Simulation

John Higgins
Application Engineer
ANSYS, Inc.
• Introduction
• Methods of Drop Test Analysis
 – Implicit Transient Dynamics
 – Explicit Dynamics
 – Response Spectrum (Linear Dynamics)
• Examples
• Live demonstration of Explicit STR
Introduction

- Many commercial and electronic components have drop test specifications
- Build and test methodology takes large amounts of calendar time and labor and material costs
- It would be very useful to be able to determine before the drop test if the component will survive.
- That can be done with simulation (or virtual drop test)
Response Spectrum (frequency integration)

- The impact is assumed to be a half sine loading with a hand calculated time duration expressed as a harmonic frequency.
- This is a mode superposition method that requires the model to be completely linear.
- This analysis solves much faster than the transient approaches and uses significantly fewer resources.

Implicit (time integration)

- The solution is obtained using a series of linear approximations.
- Small iterative time steps are required to achieve convergence.
- Good for drop simulation with long time durations and no or moderate nonlinearities.

Explicit (time integration)

- The equations become uncoupled and can be solved for directly (explicitly).
- Tiny time steps solved once
- No inversion of the stiffness matrix is required.
- Good for problems with short time transients and extreme nonlinearities. This includes extremely large distortions and deformation, material failure, extremely nonlinear materials.
Response Spectrum Drop Test Simulation

- Method described in *Vibration Analysis of Electronic Equipment*, by Dave Steinberg
- Set up the model as you would for any response spectrum analysis
- Load Spectrum are hand calculated based on drop height and
Implicit Transient Dynamics

- Solution depends on previous time step and current time step
- Resolves nonlinearities with standard Newton–Raphson iteration approach
- Can handle moderate nonlinearities
 - Most contact
 - Moderate nonlinear materials
 - Moderate distortion and strain
- Can handle events of second-minute duration
- Uses standard 2nd order solid elements
 - No hourglass energy issues
- Use for problems of duration of seconds to minutes with moderate or no nonlinearities
Example Implicit Drop Simulation
Electronic Enclosure

- Linear elastic materials
- Small strain
- Straight forward contact
- Prefailure only
Explicit Dynamics

• Solution depends only on previous time step
• Requires a very small (sub-μs) time step
 – Limited to problem with duration in milliseconds or less
 – Most drop problems are of this duration
 – Time step is partially based on mesh size
• Does not require non-linear convergence, therefore can resolve the most severe nonlinearities
 – Excessive distortion and displacement
 – Extremely non-linear material
 – Buckling
 – Material failure
 – Contact failure
• Uses 1st order elements
 – Need finer mesh to get same accuracy as implicit
Explicit Dynamics Solutions

• ANSYS/LS-DYNA
 – Jointly developed product (since 1995)
 – Mechanical Interface for preprocessing – MAPDL or LS-Post for post processing
 – LSTC – LS-DYNA solver
 – Brick meshes
 – Solid problems only

• ANSYS Explicit STR
 – Purchased Century Dynamics in 2005
 – Continual development over 30 years
 – Same interface as ANSYS Mechanical
 – Tetrahedral and brick meshing
 – Easy restart
 – Easy parametric studies
 • Angle of strike
 – Design Exploration
ANSYS/LS-DYNA Applications

Electronics

- Large Distortion
- Material Failure
DROP TEST OF A SCREWDRIVER (SD.INP)
Explicit/STR Applications
Electronics Product

- Material Failure
- Contact Failure
Explicit/STR Applications
Nuclear Waste Containment Vessel
Live Demonstrations
• Example:: Sports equipment design (Extreme and otherwise)
Conclusions

- **Explicit Dynamics simulation is very useful when**
 - Time durations are very short (approximately msec.)
 - Extremely non-linear behavior
 - Implicit schemes will not converge

- **ANSYS has 3 of the top Explicit Dynamics solutions.**
 - ANSYS Explicit/STR
 - ANSYS/LS-DYNA
 - ANSYS Autodyn