A 1,000 liter water container is extrusion blow molded. The container is placed in a steel cage to reduce the amount of deformation when filled. The blow molding process is simulated using ANSYS Polyflow. The initial thickness distribution of the parison is controlled resulting a weight reduction by 10% and reduction in maximum principle stress by 17%. The thickness distribution obtained from the blow molding simulation is mapped onto a static structural FEA model using ANSYS Mechanical to predict the part performance under hydrostatic loading.

Design Challenge
- From the Manufacturing (Blow Molding) Process:
 - Is the part completely formed?
 - Are there any defects (knit lines)?
 - What is the final material/thickness distribution?
- Resultant Part Performance (FEA Testing):
 - Will the final part have the required properties?
 - When stacked on top of each other, will the part have enough “top load” strength (linear, non-linear buckling)?
 - If dropped during use or transportation, how will it perform? (drop test)
 - Other performance characteristics (side squeeze, puncture resistance, hydrostatic loading)

ANSYS Simulation-Driven Design Flow

Final Material Distribution

Mapped Thickness Variation

Different (Independent) Meshes

Hydrostatic Loading [1 ton of water]

Total Deformation

Total (von Mises) Stresses

Initial Thickness Optimization

Improvement in Final Thickness

Total (von Mises) Stresses Comparison

17% reduction in max stress