Automated Multiple 3D Crack Modeling

Francis H. Ku (Senior Consultant)
Structural Integrity Associates, Inc.
5215 Hellyer Avenue, Suite 210
San Jose, CA 95138

2011 ANSYS Regional Conference
August 23, 2011
Santa Clara, California, USA
Presentation Outline

• About Structural Integrity Associates, Inc. (SI)
• Background on 3D Crack Modeling
• SI’s Approach and Implementation
• Capability and Flexibility
• 3D Crack Modeling Procedures
• Example Models and Analyses
• Conclusions
About SI

- Engineering Consulting Firm
 - Founded in 1983 in San Jose, California
 - Specialized in Prevention/Control/Repair of Structural/Mechanical Failures
 - Consulting Services/Research and Development/Software and Data Acquisition Systems
 - Strong Participation in Industry Codes and Standards Activities
 - Over 200 Full Time Technical Staff
Our Offices
(Special Markings for NPS Offices)

- Headquartered in San Jose
- Branch offices throughout the United States and Canada
- Affiliates in China, Taiwan, South Korea, and Spain
- Serves clients worldwide
Divisions and Service Offerings

NUCLEAR POWER

FOSSIL POWER

ALTERNATIVE POWER

PROCESS INDUSTRIES

GAS & OIL

Complete Engineering Services

- Structural and Stress Analyses
- Fracture Mechanics Analysis and Risk Assessment
- Management of Aging Buried Piping
- Materials/Metallurgical/Corrosion Engineering
- Nondestructive Examination (NDE)
- Root-Cause Failure Analysis
- Welding Engineering and Residual Stress Analysis
- Vibration Analysis and Monitoring
- Fatigue Monitoring and Management
SI’s ANSYS FEA Usage

Design

Refurbishment

Crack Analysis

Fabrication
Background on 3D Crack Modeling

• Multiple cracks of different types and forms can co-exist in a single component
 – Interaction between cracks within close proximity

• General crack modeling macros and software that interface with ANSYS
 – Typically only capable of modeling a single crack
 – Limited to predefined shapes and types
 – Multiple crack modeling via 3rd party proprietary software
 – Added cost in quality assurance
SI’s Approach

• Automated multiple 3D crack modeling
 – Works on existing mesh
 – Combined to form irregular crack profiles
• Crack profiles do not need to conform to predefined shapes
• Crack types can be combinations of
 – Half cracks
 – Full cracks
 – Surface cracks
 – Sub-surface cracks
 – Partial surface cracks
• Quick FEA solutions using close approximation of actual crack shapes
Implementation

- Logics encoded in ANSYS APDL macros called “AnTip”
- Modify elements and insert spider-web type mesh pattern along 3D crack fronts
 - Native ANSYS commands and procedures
 - Native ANSYS models and analyses
- Automated results post-processing
 - Stress intensity factors (K_I, K_II, K_III) are automatically extracted
 - Use ANSYS KCALC command
 - Results saved in comma separated values (CSV) file format
 - Automated K extractions for transient analyses of multiple load steps
- Results ensured by the existing quality assurance of the ANSYS software
Optional GUI to Create ANSYS Input Files

- Inputs
 - Database to convert:
 - Crack definition file:

- Outputs
 - Output directory:
 - Output filename:

- Special Features
 - Create crack face stress application routines?
 - Stress database:

- Crack Property Inputs
 - Same type, co-planar cracks (one CSYS)
 - Varying types or varying planar cracks
 - Non-planar cracks or missing crack CSYS
 - Crack front no. (99 max)
 - Crack plane CSYS:
 - Crack type:
 - Half surface crack
 - Full surface crack
 - Half subsurface crack
 - Full subsurface crack
 - Apply symmetry BC on half crack plane?
 - No
 - Yes

Settings must be stored via [Update Settings]

[Update Settings] [Stored] [Review Settings] [OK] [Exit]
3D Crack Modeling Procedures: Select Location

Location of corner crack to be inserted
Procedure: Run Macro and Perform Analysis

Crack tip elements inserted around crack fronts
Procedure: Review K Result Outputs

• Results saved as .CSV files
• K results for each crack front node
• Direct open in spreadsheet program for further processing
Procedure: Define Crack Plane and Crack Front

Crack Plane

- FACE1 and FACE2
- FRONT2 (3 nodes)

- FRONT1 (7 nodes)
Capability and Flexibility

- Multiple cracks
- Combined crack types
- Non-planar and arbitrary crack planes
Capability and Flexibility

- Cracks initiate in the middle of another (T-Crack)
- Cracks crossing each other (Cross-Crack)
- Cracking along seam welds
Capability and Flexibility

- Approximate irregular crack shapes
- Map stresses from separate analysis as crack face pressure load (based on linear super position principle)
Capability and Flexibility

- Overlapping cracks
- Approximate crack growth
- Evaluation acceptability of crack depths
CONCLUSIONS

- Multiple 3D crack modeling and post-processing tool
- Native ANSYS models, analyses, and results
- Work with existing FE models and mesh
- Support any user definable crack profiles
- Automated process and streamlined post-processing
- Enable detailed evaluations of interactions between multiple cracks and irregular cracks within a significantly short amount of time.
Questions?