Solder Fatigue Evaluation
with High Fidelity PWB Assembly Model

Simon Shang, PhD
Aerojet Propulsion, Sacramento, CA
simon.shang@aerojet.com

ANSYS Regional Conference, Santa Clara, California. August 23, 2011
Outline

- Background of Solder Fatigue Evaluation
- Assembly Model and Component Library
- Fidelity and Efficiency
- Actual Design Cases*

*: Certain Numbers Are Omitted for Security Reason
Background of Solder Fatigue Evaluation

- Some PWB May Contain Hundreds of Electronic Components, and Thousands of Solder Joints
- Solder Fatigue in Dynamic Environments Has Been a Major Failure Mode
- Fatigue Evaluation Is Based on
 - Solder Stress in Dynamic Environment
 - Solder Material’s Fatigue Strength (S-N Curve)
- The Challenge Is to Determine Solder Stress – Reliably, and For Thousands of Them!
Assembly Model and Component Library

- It is well understood that an assembly model has the following advantages:
 - Captures component interaction
 - Captures system load path
 - And thus provides fidelity prediction on solder joint response

- But an assembly model would be very costly
 - Can the problems be solved?
Assembly Model and Component Library (Cont’d)

- The Reason for Complexity: Numerous Electronic Components
- Aerojet Solution: Electronic Component Library
 - Component Structural Models Are Pre-Built by Macros with Parameters as Arguments

 BGA:
 IC:
 Capacitor:
 ...

Solder Fatigue with PWB Assembly Model – Shang
Then PWB Assembly Models Is Generated by A Series of Function Calls

```
&ael,a,,76,79,3
cm,atopclea,area
!For u19,u25,u34,u43,u52,u61:
weight=0.00077
bga,88,0.018,14,14,0.019,0.04,weight,ex2,3
bga,87,0.018,14,14,0.019,0.04,weight,ex2
bga,89,0.018,14,14,0.019,0.04,weight,ex2
bga,90,0.018,14,14,0.019,0.04,weight,ex2
bga,86,0.018,14,14,0.019,0.04,weight,ex2
bga, 1,0.018,14,14,0.019,0.04,weight,ex2
a1lse
!For j1,j5,j19,j17,
weight=0.0001
chipresist4,11,0.04,0.07,weight,ex2
chipresist4,10,0.04,0.07,weight,ex2
chipresist4,43,0.04,0.07,weight,ex2
esel,s,type,,3
cm,sel,u,etopclea
cm,etopbglead,elem
```
Fidelity and Efficiency

- With the Scattered Components Taking More Than 50% of the PWB Assembly Weight, Such An Assembly Model Captures The Structural Dynamic Characteristics with High Fidelity

 1. Components Modeled with Solids,
 - Representing Component Stiffness, Inertia and Contributions to the Assembly
 2. Leads Modeled by Beams
 - Adequate Force and Stress Responses for Fatigue Evaluation
 3. Board and Supports Modeled with Shell and Solids as Appropriate

- First Model Completed in A Couple of Days
 - Design Mod Completed in Minutes
Actual Design Cases: Controller

- A PWB Design in a Propulsion System Contains 500+ Electronic Components
- The Objectives Are to Evaluate Displacement, Strength and Solder Fatigue in the Harsh Dynamic Environments
- Structural Evaluation Is Performed with An Assembly FEA

Bottom View of A PWB
(>500 Components)

FEM of the Assembly
(>38000 Nodes, with Beam/Shell/Solid Elements)
Controller Natural Frequencies and Modes

- Modal Analysis Is Done First to Verify the Frequency Requirements
 - Realistic Stiffness/Mass Distribution Renders High Fidelity to the Results
Controller Deflection

- Then Deformation from a Random Vibration Response Is Used to Verify Deflection Requirements

RMS (1-σ) Displacement

Response Accl. PSD

\[D_{RMS} = 0.000786 \text{ in} \]

\[A_{RMS} = 4889 \text{ in/s}^2 \]

\[F_0 = \sqrt{\frac{A_{RMS}}{2\pi}} = 397 \text{ Hz} \]
Solder Joint Force, Stress and CDI

- Then the Forces of All Solder Joints Are Processed, Deriving Solder Stress and Cumulative Damage Index (CDI)
 - Forces, Stresses, and CDI Are Presented in 3-D Graph

Solder Joint Stresses on the 2300+ Joints

Max. Solder Joint Stress: 9

Stress Distribution Details

Max. Solder Joint Stress: 9

Solder Fatigue with PWB Assembly Model – Shang
Conclusions

- PWB Assembly Analysis Provides High Fidelity Structural Dynamic Responses
- Component Library Makes Assembly Analysis Efficient
- Solder Joint Results Presented in 3-D Graph Are Very Informative
- Much Yet to Be Done to Improve, and Correlate with Tests
Additional Info

- **Analysis Approach**

 - **Modeling**
 - CAD
 - Board Layout
 - Datasheet & Library
 - Housing Model
 - TCCA Model
 - TCCA Assembly Model

 - **Strength Evaluation**
 - G-Loads
 - Flight PSD
 - Static Analysis
 - Random Vibration
 - Strength Evaluation

 - **Solder Fatigue Evaluation**
 - Launch Environment
 - Flight Environment
 - Random Vibration
 - TDAC Op Environment
 - Accumulated Damage & Solder Fatigue Evaluation
More of Component Library

Regional ANSYS Conference 2011

1. BGA Component FEM Model
2. BGA Component output

3. Chip resistor with surface mounts
4. Chip with heat sink

Solder Fatigue with PWB Assembly Model – Shang
Solder Joint Forces on the 2300+ Joints

Solder Fatigue with PWB Assembly Model – Shang
Solder Joint CDI

Solder CDI on 2500+ Joints

BGA CDI Details

Solder Fatigue with PWB Assembly Model – Shang
Solder Fatigue Evaluation (Steinberg)

- Fatigue Life Consumption in Dynamic Environments Is Measured by “Cumulative Damage Index” (CDI), Calculated with The “3-Band” Technique that Implements Miner’s Rule

\[
CDI = \sum \frac{n_i}{N_i} = f_c T \left(\frac{0.6831}{N_1} + \frac{0.271}{N_2} + \frac{0.0433}{N_3} \right)
\]

- Stress Frequency:

\[
f_c = \frac{1}{2\pi} \left[\int \omega^2 D(\omega) d\omega \right]^{1/2} / \int D(\omega) d\omega
\]

- Solder S-N Curve: