Providing Integrated Structural and Civil Engineering Application using ANSYS Workbench SDK

ESOP System

Pawel Piechnik
Project Manager
Robobat
Overview of the Presentation

• Goal
 - to show simplicity of integrating ROBOBAT civil engineering software with ANSYS Workbench using SDK

• Contents
 - ROBOBAT and its products
 - ESOP system – integrated environment
Robobat

- A software author in the Civil & Structural Engineering market since 1988
 - Sold in excess of 14000 licenses worldwide
 - Employ in excess of 150 staff,
 - Turnover $13M in 2005
 - Interoperable solutions for analysis, code design, modeling and drafting of civil engineering structures
 - Robobat is also an authorized ANSYS reseller
Today we show integration of our software ESOP with ANSYS WB. This solution can also integrate with our other applications:

- **Robot Millennium**
 structural engineering analysis and code design

- **RCAD Steel**
 drafting tool for steel based on Autocad

- **RCAD Concrete**
 drafting tool for reinforced concrete based on Autocad

The integration of ESOP with ANSYS Workbench opens up the complete civil engineering process to the user.
• MS Excel based environment dedicated to creation of advanced engineering calculations

• Environment for Rapid Application Development

• Library of engineering applications
ESOP – Environment for User’s engineering calculations

Editorial tools:
- variables registration and recognition
- units processing
- dynamic tables
- templates
- preferences & personalization
- dedicated controls (hyperlinks, combo boxes, etc …)

Data access:
- „transparent” access to databases (via user controls and formulas)
- Provided databases: profiles, materials, bolts, loads
- adding of user databases

Inherited Excel functionality
- Formulas
- Objects
- VBA debugger
- Equations …
PROTECTED STEEL ELEMENT IN FIRE

Calculation of the evolution of steel temperature and thermal properties at elevated temperature

Profile: UB 305 x 102 x 25

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface exposed to fire</td>
<td>0.991</td>
<td>m²</td>
</tr>
<tr>
<td>Cross-sectional area</td>
<td>0.00316</td>
<td>m²</td>
</tr>
</tbody>
</table>

Thermal properties of steel

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit mass of steel</td>
<td>7950</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

Thermal properties of fire protection material

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of protection</td>
<td>0.016</td>
<td>m</td>
</tr>
<tr>
<td>Unit mass of protection</td>
<td>800</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Specific heat</td>
<td>1700</td>
<td>J/kgK</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>0.2</td>
<td>W/m²K</td>
</tr>
<tr>
<td>Section factor for protected steel member</td>
<td>225.0633</td>
<td>m⁻¹</td>
</tr>
</tbody>
</table>

Nominal steel temperature in time

- **Exposure time (t):** 30 min
- **Nominal temperature time after time (t):** 374.74

Graph: Temperature increase in protected steel element

- **Temperature (°C):** 0 to 1000
- **Time (min):** 0 to 60
ESOP – RCAD environment

- Interface design based on Excel UI, + editorial tools

- Engineering tools
 - FEM grid generator
 - FEM solver
 - HTML note generator
 - 3D viewer

- Databases
 - profiles, materials, bolts, loads

- Developer tools
 - project templates (C++, VB)
 - COM communication templates
 - hardware & software protection

- Localization
 - national versions
 - localized databases
 - national codes verification
ESOP – Library of Applications

• More than 400 commercial modules

• Current domains of application:
 - static analysis
 - dynamic analysis
 - steel design
 - RC design
 - timber design
 - masonry design
 - strength of materials
 - physics
 - geotechnics

• Localization:
 - 5 national versions
 - localized databases
 - national codes verification
ESOP – FEM solver – Slab analysis

- advanced calculations
- simplicity of use
ESOP – Static analysis

Bar structures

Shells, Plates

Other

Sections
ESOP – Steel

Connections

Verifications
ESOP – Reinforced Concrete

Stairs

Cantilevers, punching

Floors
ESOP – Timber

- parameterization
- static analysis
- code verification
ESOP – Masonry

Walls
ESOP – Vertical solutions

Wave Loader for Robot Millennium
- load generation
- parameterization and visualization
ESOP in ANSYS Workbench

- ESOP as a part of ANSYS WB Projects
 - ESOP ActiveX inside ANSYS WB
 - integration by ANSYS SDK
 - automated installation

- Communication with ANSYS
 - based on COM interfaces
 - models generation
 - data and results analysis
 - automation for ANSYS
 - additional user calculations
ESOP in ANSYS Workbench
ESOP in ANSYS Workbench

- Multi-span beam - static calculations

Beam:
section: W 24x76
material: STEEL

- Moment of inertia with respect to y-axis
- Young modulus

<table>
<thead>
<tr>
<th>Supports positions</th>
<th>[m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>4.0</td>
</tr>
<tr>
<td>x_2</td>
<td>8.1</td>
</tr>
<tr>
<td>x_3</td>
<td>16.2</td>
</tr>
<tr>
<td>x_4</td>
<td>30.0</td>
</tr>
</tbody>
</table>

Load:
Concentrated forces:
- No. 1: 244.7 [kN] at [m] 16.3

Forces - uniform load:
- No. 1: 71.0 [kN/m] at [m] 16.3
Welded plate – simulation and code verification
Verification

Bearing on the concrete:

\[F_p = 14.0 \text{ [MPa]} \]

Concrete allowable bearing strength

\[f_y \leq 0.19 \times f_p \]

\[A = 0.47 \text{ [mm]} \]

Concrete bearing distance

\[A = 1.5 \left(1 - \frac{1}{1 - 2.66 \frac{P \times A + M^2}{f_p \times b^2 \times (N^2)_0^2}} \right) \]

Bending of the base plate by concrete bearing

\[F_{bh} = 198.0 \text{ [kN]} \]

Allowable bending stresses

\[M_{pl} = 14579.3 \text{ [N.m/m]} \]

Base plate bending moment

\[t_{p,req} = 20.86 \text{ [mm]} \]

Required base plate thickness

\[t_{p,req}^2 \leq t_p = 50.80 \text{ verified - ratio = 0.41} \]

Bending of the base plate by anchor bolts

\[T = 179.9 \text{ [N]} \]

Total tension force in anchor bolts

\[T = \frac{F_p \times A \times B}{2} - P \]

\[T_s = 179.9 \text{ [N]} \]

Tension force in single anchor bolts

\[t_{p,req} = 1.86 \text{ [mm]} \]

Required base plate thickness

\[t_{p,req}^2 \leq t_p = 50.80 \text{ verified - ratio = 0.03} \]
Bolted tube joint – simulation and code verification

Tubes connection

<table>
<thead>
<tr>
<th>Code</th>
<th>Proprietary© 2006 ANSYS, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>not verified</td>
</tr>
<tr>
<td>Ratio</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Forces

- $N = 200,000$ [kN] Axial force

End plate

- $h = 220$ [mm] Height
- $t = 20$ [mm] Thickness of the plate

Section

- $R = 20$ mm Thickness

Materials

- STAL 18G2 385
- $f_y = 305,0$ [MPa] Design resistance

Geometrical verification

- $2t = 6a$ Total plate thickness
- $4h > 6a$ not verified
- $7,500 < 55,000 < 120,000$ verified
- $58,000 < 56,000 < 36,000$ verified

Bolts’ resistance

- $S_w = 3.6$ [MN] Design resistance of bolts
- $S_{cy} = 0.95 S_w$ (Table 17)

End plate thickness

- $c = 58$ [mm] Distance between the hole and the weld edge
- $d = 126$ [mm] Width of the end plate connection
- $t_{min} = 4$ [mm] Minimal end-plate thickness
- $20,000 > 3,900$ verified

Tension capacity

- $\beta = 1.0$ Leverage effect coefficient
- $\beta = 2.67 - \frac{1}{\psi}$ (84)
Model generation in ANSYS WB

Simulation

Static analysis
Nearest Future:
ESOP for ANSYS Workbench

- Creation of complementary user calculations and modules cooperating with ANSYS WB, in MS Excel:
 - Getting information from ANSYS WB with use of MS Excel formulas
 - Library of VB procedures for ANSYS WB management
Nearest Future: ESOP for ANSYS Workbench

• Easy getting information from ANSYS WB:
 - Set of wizards, enabling:
 - easy question definition
 - generation of Excel formulas, getting data from ANSYS
 - Reach library of wizards/formulas

=AWB_GET_STRESS(""; "MAX", "VAL", "MISES", "Temperature")
Welds verification

\[
\begin{align*}
\text{Data:} & \\
\theta &= 6.0 \text{ [mm]} \quad \text{Weld's thickness} \\
L &= 100.0 \text{ [mm]} \quad \text{Weld's length} \\
\alpha &= 2
\end{align*}
\]

Coefficient:

\[
\alpha = 0.93 \quad \text{Reduction coefficient}
\]

Material: S275

\[
f_r = 275.0 \text{ [MPa]} \quad \text{Resistance}
\]

Efforts:

\[
\begin{align*}
N &= 1000.0 \text{ [N]} \quad \text{Axial force} \\
T &= 1000.0 \text{ [N]} \quad \text{Shearing force}
\end{align*}
\]

Angle:

\[
\phi = 45.0 \text{ [Deg]} \quad \text{Angle between the axes}
\]

Verifications:

\[
\begin{align*}
F &= 707.1 \text{ [N]} \quad \text{Effort taken by the formulas}
\end{align*}
\]

\[
\begin{align*}
\sigma &= 1.5 \quad f_r = 275.0 \text{ [MPa]} \\
\sigma &= 1.6 \quad f_r = 275.0 \text{ [MPa]}
\end{align*}
\]

\[
\begin{align*}
\sigma &= \frac{F}{A} \\
\sigma &= \frac{0.75 + 0.1 \cos \theta}{2} \quad \text{Valid} \\
\sigma &= \frac{F}{2 \sin \phi} \quad \text{Valid}
\end{align*}
\]

Selection from database:

=AWB_Get_Parameter(„THICK“)

Values from databases:

=AWB_Get_Parameter(„FX“)

Units processing (automatic)
Nearest Future: ESOP for ANSYS Workbench

- Easy setting information in ANSYS WB:
 - Set of wizards, enabling:
 - easy question definition
 - generation of VB procedures, setting information in ANSYS
 - Reach library of wizards/procedures

```vba
Public Sub SetForces(Fx As Double, Fy As Double, Fz As Double)
  Set EsopOS = CreateObject("EsopOS.Application")
  Set WB = EsopOS.AnysysWB
  Set DS = WB.AppletList.Applet("USApplet").App

  Dim E As DSEnvironmentAuto
  Set E = DS.Tres.Projects(1).Models(1).Environments(1)

  Dim S As DSSelectionLib.IWESelection
  Set S = DS.SelectionManager

  Dim L As DSLoadAuto
  Set L = E.AddLoad(S, _id_VertexForce)
  L.DefineBy = Components
  L.ComponentX = Fx
  L.ComponentY = Fy
  L.ComponentZ = Fz
End Sub
```
Nearest Future: ESOP Expert SDK (also in Ansys WB)

- C# templates in .Net environment for quick development of advanced engineering applications

- Providing ready-made functional objects and templates like:
 - Frame container (windows, toolbars, ...)
 - 2D / 3D Graphical Viewer
 - HTML note generator
 - HTML note viewer and composer
 - Dedicated editorial controls ...
 - Serializing and saving mechanism (XML format)
 - Databases access
ESOP System is the environment allowing for easy creation of complementary functionalities and calculations for ANSYS products, by end-users and 3rd party companies.